3.3 \(\int \frac{(A+B x^2) (d+e x^2)}{\sqrt{a+c x^4}} \, dx\)

Optimal. Leaf size=277 \[ \frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac{1}{2}\right ) \left (\frac{3 A c d-a B e}{\sqrt{a}}+3 \sqrt{c} (A e+B d)\right )}{6 c^{5/4} \sqrt{a+c x^4}}-\frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} (A e+B d) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{c^{3/4} \sqrt{a+c x^4}}+\frac{x \sqrt{a+c x^4} (A e+B d)}{\sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )}+\frac{B e x \sqrt{a+c x^4}}{3 c} \]

[Out]

(B*e*x*Sqrt[a + c*x^4])/(3*c) + ((B*d + A*e)*x*Sqrt[a + c*x^4])/(Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)) - (a^(1/4)*(
B*d + A*e)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/
a^(1/4)], 1/2])/(c^(3/4)*Sqrt[a + c*x^4]) + (a^(1/4)*(3*Sqrt[c]*(B*d + A*e) + (3*A*c*d - a*B*e)/Sqrt[a])*(Sqrt
[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/
(6*c^(5/4)*Sqrt[a + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.224547, antiderivative size = 432, normalized size of antiderivative = 1.56, number of steps used = 8, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {1721, 220, 305, 1196, 321} \[ -\frac{a^{3/4} B e \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{6 c^{5/4} \sqrt{a+c x^4}}+\frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} (A e+B d) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 c^{3/4} \sqrt{a+c x^4}}-\frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} (A e+B d) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{c^{3/4} \sqrt{a+c x^4}}+\frac{x \sqrt{a+c x^4} (A e+B d)}{\sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )}+\frac{A d \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt{a+c x^4}}+\frac{B e x \sqrt{a+c x^4}}{3 c} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*x^2)*(d + e*x^2))/Sqrt[a + c*x^4],x]

[Out]

(B*e*x*Sqrt[a + c*x^4])/(3*c) + ((B*d + A*e)*x*Sqrt[a + c*x^4])/(Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)) - (a^(1/4)*(
B*d + A*e)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/
a^(1/4)], 1/2])/(c^(3/4)*Sqrt[a + c*x^4]) + (A*d*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x
^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(2*a^(1/4)*c^(1/4)*Sqrt[a + c*x^4]) - (a^(3/4)*B*e*(Sqrt
[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/
(6*c^(5/4)*Sqrt[a + c*x^4]) + (a^(1/4)*(B*d + A*e)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]
*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(2*c^(3/4)*Sqrt[a + c*x^4])

Rule 1721

Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Int[ExpandIntegrand[1/Sqrt[a +
c*x^4], Px*(d + e*x^2)^q*(a + c*x^4)^(p + 1/2), x], x] /; FreeQ[{a, c, d, e}, x] && PolyQ[Px, x^2] && NeQ[c*d^
2 + a*e^2, 0] && IntegerQ[p + 1/2] && IntegerQ[q]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rubi steps

\begin{align*} \int \frac{\left (A+B x^2\right ) \left (d+e x^2\right )}{\sqrt{a+c x^4}} \, dx &=\int \left (\frac{A d}{\sqrt{a+c x^4}}+\frac{(B d+A e) x^2}{\sqrt{a+c x^4}}+\frac{B e x^4}{\sqrt{a+c x^4}}\right ) \, dx\\ &=(A d) \int \frac{1}{\sqrt{a+c x^4}} \, dx+(B e) \int \frac{x^4}{\sqrt{a+c x^4}} \, dx+(B d+A e) \int \frac{x^2}{\sqrt{a+c x^4}} \, dx\\ &=\frac{B e x \sqrt{a+c x^4}}{3 c}+\frac{A d \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt{a+c x^4}}-\frac{(a B e) \int \frac{1}{\sqrt{a+c x^4}} \, dx}{3 c}+\frac{\left (\sqrt{a} (B d+A e)\right ) \int \frac{1}{\sqrt{a+c x^4}} \, dx}{\sqrt{c}}-\frac{\left (\sqrt{a} (B d+A e)\right ) \int \frac{1-\frac{\sqrt{c} x^2}{\sqrt{a}}}{\sqrt{a+c x^4}} \, dx}{\sqrt{c}}\\ &=\frac{B e x \sqrt{a+c x^4}}{3 c}+\frac{(B d+A e) x \sqrt{a+c x^4}}{\sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )}-\frac{\sqrt [4]{a} (B d+A e) \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{c^{3/4} \sqrt{a+c x^4}}+\frac{A d \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt{a+c x^4}}-\frac{a^{3/4} B e \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{6 c^{5/4} \sqrt{a+c x^4}}+\frac{\sqrt [4]{a} (B d+A e) \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 c^{3/4} \sqrt{a+c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0990607, size = 121, normalized size = 0.44 \[ \frac{c x^3 \sqrt{\frac{c x^4}{a}+1} \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};-\frac{c x^4}{a}\right ) (A e+B d)+x \sqrt{\frac{c x^4}{a}+1} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{c x^4}{a}\right ) (3 A c d-a B e)+B e x \left (a+c x^4\right )}{3 c \sqrt{a+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*x^2)*(d + e*x^2))/Sqrt[a + c*x^4],x]

[Out]

(B*e*x*(a + c*x^4) + (3*A*c*d - a*B*e)*x*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^4)/a)] +
c*(B*d + A*e)*x^3*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/2, 3/4, 7/4, -((c*x^4)/a)])/(3*c*Sqrt[a + c*x^4])

________________________________________________________________________________________

Maple [C]  time = 0.004, size = 269, normalized size = 1. \begin{align*} Be \left ({\frac{x}{3\,c}\sqrt{c{x}^{4}+a}}-{\frac{a}{3\,c}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{c{x}^{4}+a}}}} \right ) +{i \left ( Ae+Bd \right ) \sqrt{a}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){\frac{1}{\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{c{x}^{4}+a}}}{\frac{1}{\sqrt{c}}}}+{Ad\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{c{x}^{4}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)*(e*x^2+d)/(c*x^4+a)^(1/2),x)

[Out]

B*e*(1/3/c*x*(c*x^4+a)^(1/2)-1/3*a/c/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^
(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I))+I*(A*e+B*d)*a^(1/2)/(I/a^(1/2)*c^(1
/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)/c^(1/2)*(EllipticF(
x*(I/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*c^(1/2))^(1/2),I))+A*d/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^
(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2)
,I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )}{\left (e x^{2} + d\right )}}{\sqrt{c x^{4} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*(e*x^2+d)/(c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*(e*x^2 + d)/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B e x^{4} +{\left (B d + A e\right )} x^{2} + A d}{\sqrt{c x^{4} + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*(e*x^2+d)/(c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

integral((B*e*x^4 + (B*d + A*e)*x^2 + A*d)/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

Sympy [C]  time = 3.29101, size = 167, normalized size = 0.6 \begin{align*} \frac{A d x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{1}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{5}{4}\right )} + \frac{A e x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{7}{4}\right )} + \frac{B d x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{7}{4}\right )} + \frac{B e x^{5} \Gamma \left (\frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{5}{4} \\ \frac{9}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{9}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)*(e*x**2+d)/(c*x**4+a)**(1/2),x)

[Out]

A*d*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(5/4)) + A*e*x**3*gamma(3
/4)*hyper((1/2, 3/4), (7/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(7/4)) + B*d*x**3*gamma(3/4)*hyper((1/
2, 3/4), (7/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(7/4)) + B*e*x**5*gamma(5/4)*hyper((1/2, 5/4), (9/4
,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(9/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )}{\left (e x^{2} + d\right )}}{\sqrt{c x^{4} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*(e*x^2+d)/(c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*(e*x^2 + d)/sqrt(c*x^4 + a), x)